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Overview

▶ Integer compositions and interval partitions

▶ Main results: self-similar interval partition evolutions
▶ Applications

▶ Ray–Knight type theorems
▶ Population-genetics models
▶ Evolution of (discrete and continuum) trees



1. Integer compositions and interval partitions



Integer Compositions
A composition of integer n ∈ N is a tuple σ = (σ1, . . . , σk) of ordered positive
integers with n = σ1 + · · ·+ σk .

▶ A composition (1, 1, 1, 3, 2) of 8 ⇔ a diagram
▶ Keeping track of only the sizes of parts, and not their order: a partition of

an integer/ Young diagram

The (directed) graph of compositions

▶ An edge from σ to λ:
if λ can be obtained from σ by
stacking or inserting one box.
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The (directed) graph of compositions

▶ An edge from σ to λ :
if λ can be obtained from σ by
stacking or inserting one box.
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▶ Scaling limit of random walks on the graph of partitions:

Diffusion on the Kingman simplex (Borodin, Olshanski, Petrov)
Applications in algebraic combinatorics and representation theory.

Question: Scaling limits of random walks on the graph of compositions?
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The Space of Interval Partitions

L ≥ 0. We say β is an interval partition of the interval [0, L], if

▶ β = {(ai , bi ) ⊂ (0, L) : i ≥ 1} a collection of disjoint open intervals

▶ The total mass (sum of lengths) of β is ∥β∥ :=
∑

i≥1(bi − ai ) = L.

▶ a composition (1, 1, 1, 3, 2) of integer 8
an interval partition {(0, 1), (1, 2), (2, 3), (3, 6), (6, 8)} of [0, 8]

(1, 1, 1, 3, 2) ⇔
1 1 1 3 2

▶ Zero points Z of a Brownian motion on (0, 1): interval components of the
open set (0, 1) \ Z form an interval partition β of [0, 1]
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▶ The space I of all interval partitions is equipped with the Hausdorff metric
dH (between the endpoint sets [0, L] \ β).

▶ (I, dH) is not complete but the induced topological space is Polish.
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2. Chinese Restaurant Processes
and Interval Partition Evolutions



Up-Down Ordered Chinese Restaurant Processes

▶ Tables are ordered in a line.

▶ Fix α ∈ (0, 1) and θ ≥ 0. We construct a continuous-time Markov chain.
▶ Arriving (up-step):

▶ For each occupied table, say there are m ∈ N customers, a new customer
comes to join this table at rate m − α

▶ At rate θ, a new customer enters to start a new table at the leftmost
position.

▶ Between each pair of two neighbouring occupied tables or at the rightmost
position, a new customer enters and begins a new table there at rate α;

1−α 1−α 1−α 3−α 2−α

θ α α α α α

▶ Leaving (down-step): Each customer leaves at rate 1.
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Time

(1, 1, 1, 3, 2)

(1, 1, 1, 4, 2)

(1, 1, 4, 2)

(1, 4, 2)

(1, 4, 1, 2)
▶ At each time t ≥ 0, list the

numbers of customers of occupied
tables, from left to right, by a
composition C(t).

▶ The process (C(t), t ≥ 0) is a
random walk on the graph of
compositions.
(determined by two parameters
α ∈ (0, 1), θ ≥ 0)

Theorem (S.–Winkel 2020+)

Let α ∈ (0, 1), θ ≥ 0.(
C(2nt)

n
, t ≥ 0

)
−→
n→∞

(β(t), t ≥ 0) in distribution.

The scaling limit (β(t), t ≥ 0) is an interval-partition-valued process. We call it
an (α, θ)-Self-Similar Interval-Partition Evolution, SSIPE(α, θ).

▶ A related scaling limit result: [Rivera-Lopez and Rizzolo AIHP2022+]
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Interval-Partition Evolutions

Theorem (S.–Winkel 2020+)

Let α ∈ (0, 1), θ ≥ 0.(
C(2nt)

n
, t ≥ 0

)
−→
n→∞

(β(t), t ≥ 0) in distribution.

The scaling limit (β(t), t ≥ 0) is an interval-partition-valued process. We call it
an (α, θ)-Self-Similar Interval-Partition Evolution, SSIPE(α, θ).

▶ Composition (1, 1, 1, 3, 2) ⇔ Interval Partition
1 1 1 3 2

Time

(1, 1, 1, 3, 2)

(1, 1, 1, 4, 2)

(1, 1, 4, 2)

(1, 4, 2)

(1, 4, 1, 2)

Interval-Partition Evolution:
http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif

http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif
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Construction of SSIPE

▶ Ideas from [Forman-Pal-Rizzolo-Winkel, EJP2020]

▶ A process (X (s), s ≥ 0) with only positive jumps stopped at a random
time τ

▶ Mark each jump by an excursion (fr (z), z ≥ 0), whose length satisfies
inf{z > 0: fr (z) = 0} = ∆X (r) = X (r)− X (r−)

▶ A table is add at position r at time/level X (r−), whose size evolves
according to fr

▶ Skewer at level y : the sizes of ordered tables at level y form an interval
partition β(y)

t

Time/Level

r

τ

X (r−)

X (r)

fr (y−X (r−))
β(y)

(fr (z),z≥0)

∆X (r)

A simulation: http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif

http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif
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Properties of SSIPE

▶ Squared Bessel process Z with dimension parameter δ ∈ R, BESQ(δ):

dZt = 2
√

|Zt |dβt + δdt.

▶ a BESQ(δ) is a continuous state branching process with branching
mechanism λ 7→ 2λ2 and immigration mechanism λ 7→ δλ

Theorem (Forman, Rizzolo, S., Winkel 2020+,F.–Pal–R.–W. AOP2021)

For α ∈ (0, 1) and θ ≥ 0, let (β(t), t ≥ 0) be an SSIPE(α, θ).

▶ It is a path-continuous strong Markov process

▶ (Self-similar with index 1) For c > 0, the space-time rescaled process
(cβ(t/c), t ≥ 0) is also an SSIPE(α, θ)

▶ The total length of intervals (∥β(t)∥, t ≥ 0) is a squared Bessel process
with dimension parameter 2θ, denoted by BESQ(2θ).

▶ There are three phases:
▶ when θ ≥ 1, it a.s. never hits ∅
▶ when θ ∈ (0, 1), it is reflected at ∅
▶ when θ = 0, it is absorbed at ∅
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The branching property of SSIPE

▶ Concatenation ⋆:
⋆ =

Proposition (F.–Pal–R.–W. AOP2021)

Let α ∈ (0, 1). Consider two independent processes:

▶ (β1(t), t ≥ 0): an SSIPE(α, 0) starting from β1(0);

▶ (β2(t), t ≥ 0): an SSIPE(α, 0) starting from β2(0).

Then (β1(t) ⋆ β2(t), t ≥ 0) is an SSIPE(α, 0) starting from β1(0) ⋆ β2(0).

▶ The parameter θ ≥ 0: immigration rate.



De-Poissonized process and Stationary Distribution

Theorem (Forman, Rizzolo, S., Winkel 2020+, F.–Pal–R.–W. AOP2021)

For an SSIPE(α, θ) (β(t), t ≥ 0), introduce a Lamperti/Shiga-type time change

τ(u) := inf

{
t ≥ 0:

∫ t

0

∥β(r)∥dr > u

}
, u ≥ 0.

The de-Poissonized SSIPE(α, θ) (renormalized and time-changed)

β̄(u) := ∥β(τ(u))∥−1β(τ(u)), u ≥ 0

is a continuous strong Markov process on the space of unit interval partitions.
The process β̄ is stationary with Poisson–Dirichlet Interval Partition PDIP(α, θ).
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Poisson–Dirichlet Interval Partition PDIP(α, θ) of [0, 1]

▶ PDIP(α, θ) is introduced by (Gnedin–Pitman, Pitman–Winkel).

▶ The ranked lengths of intervals in a PDIP(α, θ) has the law of
Poisson–Dirichlet distribution (α, θ) on the Kingman simplex.

▶ Stick-breaking construction

▶ Related to regenerative composition structures [Gnedin–Pitman].

▶ Examples:
PDIP(1/2, 1/2): zero points of a
Brownian bridge on [0, 1] from zero
to zero.

▶
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PDIP(1/2, 0): zero points of a
Brownian motion on [0, 1].

▶
0.0 0.2 0.4 0.6 0.8 1.0

−
0

.5
0

.0
0

.5
1

.0

Brownian Motion and its zeros

time

v
a

lu
e

Brownian Motion

Quan Shi


Quan Shi




3. Applications



Application I: Ray–Knight Type Theorems
▶ Ray–Knight theorems for Brownian motion B with local time

(ℓt(y), t ≥ 0, y ∈ R): for suitable stopping times, the total local time up
to this stopping time, as a process indexed by level, is a certain squared
Bessel process.

▶ Squared Bessel process Z with dimension parameter δ ∈ R, BESQ(δ):

dZt = 2
√

|Zt |dβt + δdt.

Theorem (Ray–Knight Theorems)

1. x ≥ 0. T−x : the first hitting time of B at −x
The process indexed by level (ℓT−x

(−x + y), y ∈ [0, x]): BESQ(2) starting from 0.

2. z ≥ 0. τz : the first time ℓ·(0), the local time at level 0, exceeds z
The process indexed by level (ℓτz (y), y ≥ 0): BESQ(0) starting from z.

▶ [LeGall–Yor1986, Carmona–Petit–Yor1994] Generalisations for Brownian
motion perturbed at its past or future infimum yield general BESQ(δ).
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Application I: Ray–Knight Type Theorems (conti.)

▶ X : spectrally positive stable Lévy process of index 1 + α, α ∈ (0, 1)

Laplace exponent ψ(λ) = λ1+α

2αΓ(1+α)

▶ θ ≥ 0. X = (X t = infr≤t Xr , t ≥ 0) and X (θ) = X − (1− α
θ
)X .

▶ Mark each jump (t,∆X
(θ)
t ) of X (θ), by an independent squared Bessel

bridge, of dimension parameter 4 + 2α from 0 to 0, of length ∆X
(θ)
t .

y

t

βt (y):=the interval partition at level y stopped at time t

Theorem (Forman–Rizzolo–S.–Winkel 2020+, F.–Pal–R.–W. AOP2021)

1. Let x > 0, T
(θ)
−x = inf{t ≥ 0: X

(θ)
t < −x}. Then the interval partition

evolution
(
β
T

(θ)
−x

(−x + y), y ∈ [0, x ]
)
is an SSIPE(α, θ) starting from ∅,

with total length BESQ(2θ) starting from 0.
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Application I: Ray–Knight Type Theorems (conti.)

▶ X : spectrally positive stable Lévy process of index 1 + α, Laplace

exponent ψ(λ) = λ1+α

2αΓ(1+α)

▶ X = (X t = infr≤t Xr , t ≥ 0) and Y := X − X .

▶ Mark each jump (t,∆Yt) of Y , by an independent squared Bessel bridge,
of dimension parameter 4 + 2α from 0 to 0, of length ∆Yt .

y

t

βt (y):=the interval partition at level y stopped at time t

Theorem (Forman–Rizzolo–S.–Winkel 2020+)

2 Let z ≥ 0, T−z = inf{t ≥ 0: Xt < −z}. the interval partition evolution(
(βT−z/2α

(y), y > 0)
)
is an SSIPE(α, 0) starting from dust of mass z . Its

total length process is BESQ(0) starting from z .
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Application II: A Related Population-Genetic Model

t

Time

r

X (r−)

X (r)

fr (t−X (r−))
β(t)

(fr (z),z≥0)

∆X (r)

µ(t)

(Forman, Rizzolo, S., Winkel, AAP2022)

▶ A Lévy process with each jump marked by a pair (fr ,Ur ): an excursion fr
and an independent allelic type Ur ∼ ν0 (colour).

▶ Statistic of alleles: a measure-valued process (µ(t), t ≥ 0) associated with
an SSIPE(α, θ) (β(t), t ≥ 0).

▶ The de-Poissonized process has a stationary distribution: the Pitman–Yor
distribution PY(α, θ, ν0) with α ∈ [0, 1) and θ ≥ 0.

▶ This two-parameter family, conjectured by (Feng–Sun, PTRF2010),
generalizes the labelled infinitely-many-neutral-alleles model (α = 0) by
(Ethier–Kurtz).
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Application III: Tree-Valued Processes

▶ For n ∈ N, a random walk (Markov chain) on the space of rooted binary
labelled trees with n leaves:

▶ Biological background: reconstructing phylogenetic trees from DNA data
(MCMC method).

▶ The law of a uniform binary tree with n leaves is the stationary
distribution of this random walk.

▶ Question: As n → ∞, the scaling limits of tree-valued random walks?
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Continuum-Tree-Valued Diffusions

▶ Scaling limits of (discrete) random trees [Aldous, Duquesne–Le Gall]:
Continuum random trees: Brownian tree, ρ-Stable Lévy trees, ρ ∈ (1, 2]

=⇒

▶ Scaling limits of random walks:
Aldous’ conjecture: there exists a limiting diffusion on the space of
continuum trees, with the stationary distribution given by the Brownian
tree.

▶ Two different approaches: (Löhr–Mytnik–Winter AOP2020) and
(Forman–Rizzolo–Pal–Winkel in progress)

▶ Further question: Stable trees (S.–Winkel in progress)
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PDIPs in Continuum Random Trees [Pitman-Winkel, Rembart-Winkel]
▶ A ρ-stable tree is a metric space equipped with a mass measure of total

mass 1.
With α = 1− 1/ρ:

masses of spinal bushes (Mi )i≥1

distances to the root (ℓi )i≥1

law⇐⇒
β = {Ui , i ≥ 1} ∼ PDIP(α, α),
α-diversity (Dα(inf Ui ), i ≥ 1).

root

Mi

ℓi

Mi

0 1

a uniform leaf

Figure: (coarse) spinal decomposition of a 1.5-stable tree @ Kortchemski

▶ Difficulty in the non-Brownian case: branch point with infinite degree
(S., Winkel): nested SSIPE
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Summary

▶ A two-parameter family of interval-partition evolutions as scaling limit of
random walks on the graph of compositions

▶ Ray–Knight type theorems for marked Lévy processes

▶ Generalised labelled infinitely-many-neutral-alleles model

▶ Future work: scaling limit of tree-valued random walks

root
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