Interval Partition Evolutions and Applications

 \cdot

Quan Shi 石权

中国科学院数学与系统科学研究院

quan.shi@amss.ac.cn

第17届马氏过程及相关领域研讨会, 2022年11月27日

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 9 Q Q →

Joint work with

Noah Forman (McMaster) **Douglas Rizzolo**(Delaware)

Matthias Winkel (Oxford)

メロメメ 御 メメ きょくきょう

È

 299

Overview

- ▶ Integer compositions and interval partitions
- ▶ Main results: self-similar interval partition evolutions
- ▶ Applications
	- ▶ Ray–Knight type theorems
	- ▶ Population-genetics models
	- ▶ Evolution of (discrete and continuum) trees

K ロ ▶ K 레 ▶ K 코 ▶ K 코 ▶ 『코 │ ◆ 9 Q Q ↓

1. [Integer compositions and interval partitions](#page-3-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Integer Compositions

A composition of integer $n \in \mathbb{N}$ is a tuple $\sigma = (\sigma_1, \ldots, \sigma_k)$ of ordered positive integers with $n = \sigma_1 + \cdots + \sigma_k$.

 \triangleright A composition $(1, 1, 1, 3, 2)$ of 8 ⇔ a diagram

▶ Keeping track of only the sizes of parts, and not their order: a partition of an integer/ Young diagram

The (directed) graph of compositions

An edge from σ to λ : if λ can be obtained from σ by stacking or inserting one box.

The (directed) graph of compositions

An edge from σ to λ : if λ can be obtained from σ by stacking or inserting one box.

▶ Scaling limit of random walks on the graph of partitions: Diffusion on the Kingman simplex (Borodin, Olshanski, Petrov) Applications in algebraic combinatorics and representation theory.

Question: Scaling limits of random walks on the graph of compositions?

The Space of Interval Partitions

- $L \geq 0$. We say β is an interval partition of the interval [0, L], if
	- $▶$ $\beta = \{(a_i, b_i) \subset (0, L): i \geq 1\}$ a collection of disjoint open intervals
	- ▶ The total mass (sum of lengths) of β is $\|\beta\| := \sum_{i \geq 1} (b_i a_i) = L$.
	- \blacktriangleright a composition $(1, 1, 1, 3, 2)$ of integer 8 an interval partition $\{(0, 1), (1, 2), (2, 3), (3, 6), (6, 8)\}$ of $[0, 8]$

(1, 1, 1, 3, 2) ⇔ 1 1 1 3 2

▶ Zero points $\mathcal Z$ of a Brownian motion on $(0, 1)$: interval components of the open set $(0,1) \setminus \mathcal{Z}$ form an interval partition β of $[0,1]$

- \triangleright The space $\mathcal I$ of all interval partitions is equipped with the Hausdorff metric d_H (between the endpoint sets $[0, L] \setminus \beta$).
- \blacktriangleright (\mathcal{I}, d_H) is not complete but the induced topological space is Polish.

2. [Chinese Restaurant Processes](#page-7-0) [and Interval Partition Evolutions](#page-7-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | © 9 Q @

Up-Down Ordered Chinese Restaurant Processes

- \blacktriangleright Tables are ordered in a line.
- **►** Fix $\alpha \in (0, 1)$ and $\theta > 0$. We construct a continuous-time Markov chain.
- ▶ Arriving (up-step):
	- ▶ For each occupied table, say there are $m \in \mathbb{N}$ customers, a new customer comes to join this table at rate $m - \alpha$
	- At rate θ , a new customer enters to start a new table at the leftmost position.
	- ▶ Between each pair of two neighbouring occupied tables or at the rightmost position, a new customer enters and begins a new table there at rate α ;

 $\mathbf{E} = \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A} + \mathbf{A} \oplus \mathbf{A}$

 Ω

Up-Down Ordered Chinese Restaurant Processes

- \blacktriangleright Tables are ordered in a line.
- **►** Fix $\alpha \in (0, 1)$ and $\theta > 0$. We construct a continuous-time Markov chain.
- ▶ Arriving (up-step):
	- ▶ For each occupied table, say there are $m \in \mathbb{N}$ customers, a new customer comes to join this table at rate $m - \alpha$
	- At rate θ , a new customer enters to start a new table at the leftmost position.
	- ▶ Between each pair of two neighbouring occupied tables or at the rightmost position, a new customer enters and begins a new table there at rate α ;

 $\mathbf{A} \equiv \mathbf{A} + \mathbf{A} + \mathbf{B} + \mathbf{A} + \math$

 Ω

▶ Leaving (down-step): Each customer leaves at rate 1.

- At each time $t \geq 0$, list the numbers of customers of occupied tables, from left to right, by a composition $C(t)$.
- ▶ The process $(C(t), t \ge 0)$ is a random walk on the graph of compositions.

(determined by two parameters $\alpha \in (0,1), \theta \geq 0$

 4 ロ) 4 何) 4 ヨ) 4 ヨ)

 QQ

- ▶ At each time $t \geq 0$, list the numbers of customers of occupied tables, from left to right, by a composition $C(t)$.
- ▶ The process $(C(t), t > 0)$ is a random walk on the graph of compositions. (determined by two parameters $\alpha \in (0,1), \theta \geq 0$

Theorem (S.–Winkel 2020+) Let $\alpha \in (0,1), \theta \geq 0$.

$$
\left(\frac{C(2nt)}{n}, t\geq 0\right) \underset{n\to\infty}{\longrightarrow} (\beta(t), t\geq 0) \text{ in distribution.}
$$

The scaling limit $(\beta(t),t>0)$ is an interval-partition-valued process. We call it an (α, θ) -Self-Similar Interval-Partition Evolution, SSIPE (α, θ) .

▶ A related scaling limit result: [Rivera-Lopez and Rizzolo AIHP2022+]

Interval-Partition Evolutions

Theorem (S.–Winkel 2020+) Let $\alpha \in (0,1), \theta \geq 0$.

$$
\left(\frac{C(2nt)}{n}, t\geq 0\right) \underset{n\to\infty}{\longrightarrow} (\beta(t), t\geq 0) \text{ in distribution.}
$$

The scaling limit $(\beta(t),t>0)$ is an interval-partition-valued process. We call it an (α, θ) -Self-Similar Interval-Partition Evolution, SSIPE (α, θ) .

▶ Composition $(1, 1, 1, 3, 2)$ \Leftrightarrow Interval Partition $\begin{array}{c|c} 1 & 1 & 1 & 3 & 2 \\ \hline \end{array}$

Interval-Partition Evolution:

http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gifB Ω

Construction of SSIPE

- ▶ Ideas from [Forman-Pal-Rizzolo-Winkel, EJP2020]
- A process $(X(s), s > 0)$ with only positive jumps stopped at a random time τ
- ▶ Mark each jump by an excursion $(f_r(z), z \ge 0)$, whose length satisfies $inf{z > 0$: $f_r(z) = 0} = ΔX(r) = X(r) - X(r-1)$
- ▶ A table is add at position r at time/level $X(r-)$, whose size evolves according to f_r
- \triangleright Skewer at level y: the sizes of ordered tables at level y form an interval partition $\beta(y)$

A simulation: http://www.stats.ox.ac.uk/~winkel/5_sim_skewer.gif

Properties of SSIPE

▶ Squared Bessel process Z with dimension parameter $\delta \in \mathbb{R}$, BESQ(δ):

 $dZ_t = 2\sqrt{|Z_t|}d\beta_t + \delta dt.$

 \blacktriangleright a BESQ(δ) is a continuous state branching process with branching mechanism $\lambda \mapsto 2\lambda^2$ and immigration mechanism $\lambda \mapsto \delta \lambda$

Theorem (Forman, Rizzolo, S., Winkel 2020+,F.–Pal–R.–W. AOP2021) For $\alpha \in (0,1)$ and $\theta > 0$, let $(\beta(t), t > 0)$ be an SSIPE (α, θ) .

- ▶ It is a path-continuous strong Markov process
- \triangleright (Self-similar with index 1) For $c > 0$, the space-time rescaled process $(c\beta(t/c),t>0)$ is also an SSIPE (α,θ)
- **▶ The total length of intervals** ($\|\beta(t)\|$, $t \geq 0$) is a squared Bessel process with dimension parameter 2θ , denoted by BESQ(2θ).

KORKARYKERKER POLO

- ▶ There are three phases:
	- ▶ when θ > 1, it a.s. never hits \emptyset
	- ▶ when $\theta \in (0,1)$, it is reflected at \emptyset
	- $▶$ when $\theta = 0$, it is absorbed at \emptyset

The branching property of SSIPE

Proposition (F.–Pal–R.–W. AOP2021)

Let $\alpha \in (0,1)$. Consider two independent processes:

- \blacktriangleright ($\beta_1(t), t > 0$): an SSIPE($\alpha, 0$) starting from $\beta_1(0)$;
- \blacktriangleright ($\beta_2(t), t > 0$): an SSIPE($\alpha, 0$) starting from $\beta_2(0)$.

Then $(\beta_1(t) \star \beta_2(t), t \ge 0)$ is an SSIPE(α , 0) starting from $\beta_1(0) \star \beta_2(0)$.

KORKARYKERKER POLO

► The parameter $\theta > 0$: immigration rate.

Theorem (Forman, Rizzolo, S., Winkel 2020+, F.–Pal–R.–W. AOP2021) For an SSIPE (α, θ) $(\beta(t), t \ge 0)$, introduce a Lamperti/Shiga-type time change

$$
\tau(\underline{u}) := \inf \left\{ t \geq 0 : \int_0^t ||\beta(r)|| dr > u \right\}, \quad u \geq 0.
$$

The de-Poissonized SSIPE (α, θ) (renormalized and time-changed)

$$
\overline{\beta}(u) := ||\beta(\tau(u))||^{-1}\beta(\tau(u)), \qquad u \ge 0
$$
\nis a continuous strong Markov process on the space of unit interval partitions.

\nThe process $\overline{\beta}$ is stationary with Poisson–Dirichlet Interval Partition $\text{PDF}(\alpha, \overline{\theta})$.

KORKARYKERKER POLO

Poisson–Dirichlet Interval Partition PDIP(α , θ) of [0, 1]

- ▶ PDIP (α, θ) is introduced by (Gnedin–Pitman, Pitman–Winkel).
- ▶ The ranked lengths of intervals in a PDIP(α , θ) has the law of Poisson–Dirichlet distribution (α, θ) on the Kingman simplex.
- \blacktriangleright Stick-breaking construction
- ▶ Related to regenerative composition structures [Gnedin–Pitman].

```
Examples:
PDIP(1/2, 1/2): zero points of a
Brownian bridge on [0, 1] from zero
to zero.
```


 $PDIP(1/2, 0)$: zero points of a Brownian motion on [0, 1].

4 0 1 4 4 5 1 4 5 1 5 1 5

Brownian Motion and its zeros

 $2Q$

3. [Applications](#page-18-0)

K ロ ▶ K @ ▶ K 할 ▶ K 할 ▶ | 할 | ⊙Q @

Application I: Ray–Knight Type Theorems

 \blacktriangleright Ray–Knight theorems for Brownian motion B with local time $(\ell_t(v), t > 0, v \in \mathbb{R})$: for suitable stopping times, the total local time up to this stopping time, as a process indexed by level, is a certain squared Bessel process.

▶ Squared Bessel process Z with dimension parameter $\delta \in \mathbb{R}$, BESQ(δ):

$$
\mathrm{d}Z_t = 2\sqrt{|Z_t|}\mathrm{d}\beta_t + \delta \mathrm{d}t.
$$

Theorem (Ray–Knight Theorems)

- 1. $x > 0$. T_{-x} : the first hitting time of B at $-x$ The process indexed by level $(\ell_{T_{-x}}(-x+y), y \in [0, x])$: BESQ (2) starting from 0.
- 2. $z > 0$. τ_z : the first time ℓ .(0), the local time at level 0, exceeds z The process indexed by level $(\ell_{\tau_z}(y), y \ge 0)$: BESQ(0) starting from z.
- ▶ [LeGall-Yor1986, Carmona-Petit-Yor1994] Generalisations for Brownian motion perturbed at its past or future infimum yield general BESQ (δ) .

KORKAR KERKER ST VOOR

Application I: Ray–Knight Type Theorems (conti.)

 \triangleright X: spectrally positive stable Lévy process of index $1 + \alpha$, $\alpha \in (0, 1)$ Laplace exponent $\psi(\lambda) = \frac{\lambda^{1+\alpha}}{2^{\alpha} \Gamma(1+\alpha)}$

$$
\blacktriangleright \theta \geq 0. \ \underline{X} = (\underline{X}_t = \inf_{r \leq t} X_r, \ t \geq 0) \text{ and } X^{(\theta)} = X - (1 - \frac{\alpha}{\theta})\underline{X}.
$$

▶ Mark each jump $(t, \Delta X_t^{(\theta)})$ of $X^{(\theta)}$, by an independent squared Bessel bridge, of dimension parameter $4+2\alpha$ from $\overline{0}$ to $\overline{0,}$ of length $\Delta\mathit{X}^{(\theta)}_t.$

Theorem (Forman–Rizzolo–S.–Winkel 2020+, F.–Pal–R.–W. AOP2021)

1. Let $x>0$, $T_{-x}^{(\theta)} = \inf\{t \geq 0 \colon X_t^{(\theta)} < -x\}$. Then the interval partition evolution $(\beta_{\tau_{-x}^{(\theta)}}(-x+y), y \in [0,x])$ is an $\frac{\mathcal{S}}{\mathcal{S}}\text{SIPE}(\alpha, \theta)$ starting from \emptyset , with total length $\text{BESQ}(2\theta)$ starting from 0.

Application I: Ray–Knight Type Theorems (conti.)

- \triangleright X: spectrally positive stable Lévy process of index $1 + \alpha$, Laplace exponent $\psi(\lambda) = \frac{\lambda^{1+\alpha}}{2^{\alpha} \Gamma(1+\alpha)}$
- ▶ $\underline{X} = (\underline{X}_t = \inf_{t \le t} X_t, t \ge 0)$ and $Y := X X$.
- ▶ Mark each jump $(t, \Delta Y_t)$ of Y, by an independent squared Bessel bridge, of dimension parameter $4 + 2\alpha$ from 0 to 0, of length ΔY_t .

Theorem (Forman–Rizzolo–S.–Winkel 2020+)

2 Let $z \geq 0$, $T_{-z} = \inf\{t \geq 0: X_t < -z\}$. the interval partition evolution $\big((\beta_{{\mathcal T}_{-z/2\alpha}}(y), y > 0)\big)$ is an SSIPE $(\alpha, 0)$ starting from dust of mass z. Its total length process is $BESQ(0)$ starting from z.

Application II: A Related Population-Genetic Model

(Forman, Rizzolo, S., Winkel, AAP2022)

- A Lévy process with each jump marked by a pair (f_r, U_r) : an excursion f_r and an independent *allelic type U_r* ∼ ν_0 (colour).
- ▶ Statistic of alleles: a measure-valued process ($\mu(t), t > 0$) associated with an SSIPE (α, θ) ($\beta(t), t \ge 0$).
- ▶ The de-Poissonized process has a stationary distribution: the Pitman–Yor distribution PY(α, θ, ν_0) with $\alpha \in [0, 1)$ and $\theta \geq 0$.
- ▶ This two-parameter family, conjectured by (Feng–Sun, PTRF2010), generalizes the labelled infinitely-many-neutral-alleles model ($\alpha = 0$) by (Ethier–Kurtz).

KORKAR KERKER ST VOOR

Application III: Tree-Valued Processes

▶ For $n \in \mathbb{N}$, a random walk (Markov chain) on the space of rooted binary labelled trees with n leaves:

 $\mathbf{A} \equiv \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B} + \mathbf{A} \mathbf{B}$

 Ω

- ▶ Biological background: reconstructing phylogenetic trees from DNA data (MCMC method).
- \triangleright The law of a uniform binary tree with *n* leaves is the stationary distribution of this random walk.
- ▶ Question: As $n \to \infty$, the scaling limits of tree-valued random walks?

Continuum-Tree-Valued Diffusions

▶ Scaling limits of (discrete) random trees [Aldous, Duquesne–Le Gall]: Continuum random trees: Brownian tree, ρ -Stable Lévy trees, $\rho \in (1, 2]$

▶ Scaling limits of random walks:

Aldous' conjecture: there exists a limiting diffusion on the space of continuum trees, with the stationary distribution given by the Brownian tree.

KORKARYKERKER POLO

Continuum-Tree-Valued Diffusions

▶ Scaling limits of (discrete) random trees [Aldous, Duquesne–Le Gall]: Continuum random trees: Brownian tree, ρ-Stable Lévy trees, $\rho \in (1, 2]$

▶ Scaling limits of random walks:

Aldous' conjecture: there exists a limiting diffusion on the space of continuum trees, with the stationary distribution given by the Brownian tree.

- ▶ Two different approaches: (Löhr–Mytnik–Winter AOP2020) and (Forman–Rizzolo–Pal–Winkel in progress)
- ▶ Further question: Stable trees (S.–Winkel in progress)

PDIPs in Continuum Random Trees [Pitman-Winkel, Rembart-Winkel]

 \triangleright A ρ -stable tree is a metric space equipped with a mass measure of total mass 1.

With $\alpha = 1 - 1/\rho$:

▶ Difficulty in the non-Brownian case: branch point with infinite degree (S., Winkel): nested SSIPE**KORKARYKERKER POLO**

Summary

▶ A two-parameter family of interval-partition evolutions as scaling limit of random walks on the graph of compositions

▶ Generalised labelled infinitely-many-neutral-alleles model

▶ Future work: scaling limit of tree-valued random walks

畐

Q. Shi and M. Winkel.

Up-down ordered Chinese restaurant processes with two-sided immigration, diffusion limits and emigration.

[arXiv:2012.15758.](https://arxiv.org/abs/2012.15758)

S.

N. Forman, D. Rizzolo, Q. Shi and M. Winkel.

A two-parameter family of measure-valued diffusions with Poisson–Dirichlet stationary distributions. Ann. Appl. Probab. 2022, 32(3), 2211–2253.

N. Forman, D. Rizzolo, Q. Shi and M. Winkel.

Diffusions on a space of interval partitions: the two-parameter model. [arXiv:2008.02823v3](https://arxiv.org/abs/2008.02823v3) (version 3: 2022/07).

Thanks!

KORKARYKERKER POLO